BASE-INDUCED ELECTROCYCLIC OPENING OF DIHYDROBENZOTHIOPHENES

H. Kloosterziel* and Mrs. J.A.A. van Drunen

KONINKLIJKE/SHELL-LABORATORIUM, AMSTERDAM

(Shell Research N.V.)

(Received in UK 4 January 1973; accepted for publication 14 February 1973)

The base-induced electrocyclic opening of dihydrothiophene is known 1 to give thiapentadienylanion (buta-1,3-diene-1-thiolate). Two dihydrobenzothiophenes have now been found to behave in an analogous way.

2,3-Dihydrobenzo [b] thiophene $(\underline{1})$, upon reaction with KNH₂ (as described previously 1) yields, via $\underline{2}$ by loss of a proton from C(3) and electrocyclic ring opening between S and C(2), the $\underline{0}$ -vinylthiophenolate anion $\underline{3}$. Structure $\underline{3}$ follows from the coupling pattern $(J_{12} = 11.0, J_{13} = 18.0 \text{ and } J_{23} = 2.1 \text{ c/s})$ and the formation in high yield of $\underline{0}$ -vinylthioanisole upon addition of methyl iodide. The δ -values of $\underline{3}$ (as well as the vicinal J values for the ring protons of $\underline{3}$: 7-7.5 c/s) show that $\underline{3}$ is the best valence-bond representation. The given configuration $\underline{3}$ -implying rotation about the C(aryl)-C(1) bond after opening of $\underline{2}$ -is based upon comparison of the δ -values of $\underline{3}$ and styrene².

1,3-Dihydrobenzo [c] thiophene (4) likewise gives an anion (seven protons). Although benzylmethyl sulfide is completely converted to the corresponding anion 7, the species observed here cannot be $\underline{5}$ for various reasons. The four "benzo" protons are recognized from their coupling pattern (J = 6-9 c/s). The low-field position of the one-proton singlet at δ = 8.34 cannot, by comparison with 7, be ascribed to 5, but is consistent with a "thioaldehydic" proton 1. Moreover, the remaining two protons, most likely (magnetically) equivalent in 5, appear at δ = 4.87 and 7.60 with J = 3.5 c/s, a typical methylenic coupling. These data are consistent with a thiophene-ring-opened structure $\underline{6}$. Of the two possible configurations the one drawn is slightly preferred 4.

As to the best valence-bond representation of $\underline{6}$, the data for the ring protons are decisive. Two protons appear, accidentally, as one doublet at δ = 6.36 with J = 8.5-9.0 c/s. Each of the other two protons gives a four-line signal at δ = 5.56 and 5.91 with respective splittings of 8.6 (J_{12}) and 8.9 c/s (J_{34}) and a mutual one of 6.0 c/s (J_{23}). The alternating J values show that the anion should be regarded rather as dimethylenecyclohexa-1,3-dien-7-thiolate anion $\underline{6}$ than as o-thiocarboxybenzyl anion (for which one $\overline{}$ would expect $J_{12} > J_{23} \sim J_{34}$). It is interesting to note that the electrocyclic isomeric bicyclo $\begin{bmatrix} 4.2.0 \end{bmatrix}$ octa-1,3,5-trien-7-thiolate structure can obviously be excluded.

^{*} Present address: Gorlaeus Laboratories, The University, P.O.Box 75, Leiden, The Netherla_{nds}

1023

Reaction with methyl iodide yields only polymeric material, the possible initial products being a thiobenzaldehyde, a dimethylenecyclohexadiene or other polyenic compounds.

Anions $\underline{3}$ and $\underline{6}$ are related to the \underline{o} -vinylbenzyl anion by replacing benzylic and vinylic methylene by sulphur.

REFERENCES AND FOOTNOTES.

- 1. H. Kloosterziel, J.A.A. van Drunen and P. Galama, Chem. Comm. 1969 885.
- 2. W. Brügel, T. Ankel and F. Krückeberg, Z. Elektrochem, 64 1121 (1960).
- 3. H. Kloosterziel, 3rd Organic Sulphur Symposium, Caen, May 1968, Abstracts, p.22
- 4. The broadness of the signal at δ = 8.34 suggests a long-range coupling.
- 5. G.J. Heiszwolf and H. Kloosterziel, Rec. Trav. Chim. 86 1345 (1967).